Spatially Adaptive Bayesian Penalized Regression Splines (P-splines)

نویسندگان

  • Veerabhadran Baladandayuthapani
  • Raymond J. Carroll
چکیده

In this paper we study penalized regression splines (P-splines), which are low–order basis splines with a penalty to avoid undersmoothing. Such P–splines are typically not spatially adaptive, and hence can have trouble when functions are varying rapidly. Our approach is to model the penalty parameter inherent in the P–spline method as a heteroscedastic regression function. We develop a full Bayesian hierarchical structure to do this and use Markov Chain Monte Carlo techniques for drawing random samples from the posterior for inference. The advantage of using a Bayesian approach to P–splines is that it allows for simultaneous estimation of the smooth functions and the underlying penalty curve in addition to providing uncertainty intervals of the estimated curve. The Bayesian credible intervals obtained for the estimated curve are shown to have pointwise coverage probabilities close to nominal. The method is extended to additive models with simultaneous spline based penalty functions for the unknown functions. In simulations, the approach achieves very competitive performance with the current best frequentist P–spline method in terms of frequentist mean squared error and coverage probabilities of the credible intervals, and performs better than some of the other Bayesian methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatially Adaptive Bayesian Regression Splines

In this paper we study penalized regression splines (P-splines), which are low–order basis function splines with a penalty to avoid undersmoothing. Such P–splines are typically not spatially adaptive, and hence can have trouble when functions are varying rapidly. While frequentist methods are available to address this issue, no Bayesian techniques have been developed. Our approach is to model t...

متن کامل

Spatially Adaptive Bayesian Penalized Splines With Heteroscedastic Errors

Penalized splines have become an increasingly popular tool for nonparametric smoothing because of their use of low-rank spline bases, which makes computations tractable while maintaining accuracy as good as smoothing splines. This article extends penalized spline methodology by both modeling the variance function nonparametrically and using a spatially adaptive smoothing parameter. This combina...

متن کامل

On Semiparametric Regression with O'sullivan Penalized Splines

An exposition on the use of O’Sullivan penalized splines in contemporary semiparametric regression, including mixed model and Bayesian formulations, is presented. O’Sullivan penalized splines are similar to P-splines, but have the advantage of being a direct generalization of smoothing splines. Exact expressions for the O’Sullivan penalty matrix are obtained. Comparisons between the two types o...

متن کامل

Bayesian mixture of splines for spatially adaptive nonparametric regression

A Bayesian approach is presented for spatially adaptive nonparametric regression where the regression function is modelled as a mixture of splines. Each component spline in the mixture has associated with it a smoothing parameter which is defined over a local region of the covariate space. These local regions overlap such that individual data points may lie simultaneously in multiple regions. C...

متن کامل

Splines, Knots, and Penalties

Penalized splines have gained much popularity as a flexible tool for smoothing and semi-parametric models. Two approaches have been advocated: 1) use a B-spline basis, equally-spaced knots and difference penalties (Eilers and Marx, 1996) and 2) use truncated power functions, knots based on quantiles of the independent variable and a ridge penalty (Ruppert, Wand and Carroll, 2003). We compare th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004